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INTRODUCTION 
 
Consider flow over a flat plate with a zero pressure gradient. When the flow is such that its boundary layer is laminar, 
the exact solution proposed by Blasius gives the thickness of the boundary layer along the plate [1]. The relation is 
[2][3]: 
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Where x is the distance along the flat plate measured from the leading edge; δ is the thickness of the boundary layer at a 
point of coordinate x; U is the free stream speed of the air; ν is the kinematic viscosity of the air; and Rex is the 
Reynolds number in which one uses the distance x as a characteristic length.  
 
When the boundary layer is turbulent, its thickness cannot be determined exactly. However, it can be estimated by using 
the momentum-integral equation given by:  
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together with the assumption that u, the speed of air inside the boundary layer, follows a power-law profile given by:  
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where τw is the wall shear stress, ρ the mass density of the fluid, x is the distance along the plate that is measured from 
the leading edge, U is the centreline velocity in a power-law velocity distribution; here, it will be taken as the  
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free-stream speed; V is the average velocity, α is the ratio of the average velocity to the centreline velocity, θ is the 
momentum thickness, δ* is the displacement thickness,  δ is the boundary-layer thickness at x, and y is the distance 
from the flat plate.  The momentum thickness and the displacement thickness are defined, respectively, by 
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Integration of Eq. (4) in the momentum-integral equation shows that the thickness of the boundary layer is given by  
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where 
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It can be seen that a(n) is a function of n only. Carrying out the necessary algebra, one gets: 
 

                                                           

( )( )
a

n
n n

n
n n

=
+ +











+ +






























0 07842

2
1 2 1

2 3

2 7 5

2

4 5.

/

/

                                         

                                (9) 

 
Thus, for a given n, the numerical value of a can be determined. The results of the process of determining a for various 
values of n are shown in Table 1 below. 
 

Table 1: Turbulent boundary layer over a flat plate at zero incidence: results. 
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η1 6/  0.107143 0.142857 1. 333333 0.337345906 0.057830727 

η1 7/  0.097222 0.125 1.285714 0.381143751 0.059289028 

η1 8/  0.088889 0.111111 1.250000 0.423532215 0.060235693 

η1 9/  0.0818181 0.10000 1.222222 0.464755563 0.060840728 

η1 10/  0.0757575 0.9090909 1.200000 0.504990077 0.061210918 

… … … … … … 
 
A similar table for laminar boundary layers is given by Fox and McDonald [2]. From Table 1, it can be seen that the 
boundary-layer thickness, δ, is larger than both the momentum thickness, θ, and the displacement thickness, δ*. 
However, the displacement thickness, δ*, is larger than the momentum thickness, θ. This Table was used to study 
boundary layers in the test section of a closed-circuit wind tunnel. This is illustrated in lab exercise 2. 
 
The remainder of the article is organised in the following way: First, the wind tunnel used in experiments is described; 
next, an experiment that shows how to calibrate a wind tunnel is presented. Then, an experiment that demonstrates the 
existence of the boundary layer is presented. Finally, the results of the second experiment are analysed using standard 
boundary-layer theory to characterise the nature of boundary layers in the test section of the wind tunnel for the air 
speeds used during testing.   
 
THE WIND TUNNEL USED 
 
An open-circuit Eiffel wind tunnel Model 402 B made by Engineering Laboratory Design, Inc., was used [4]. It has a 
velocity range of 3.0–48.7 m/s (10.0 – 160fps); its test section has a vertical cross section of 30.5 cm x 30.5 cm (12 in x 
12 in), a length of 61.0 cm (24 in), and it is equipped with a 7.5 kW (10.0 HP) motor (Figure 1). Different parts of the 
wind tunnel are identified and labelled in Figure 2.  
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Figure 1: Open-circuit Eiffel wind tunnel Model 402 B by ELDINC [4]. 
 

 
 

Figure 2: Parts of the wind tunnel used in experiments (Courtesy of J.J. Thomas). 
 
EXPERIMENT 1: CALIBRATION OF A WIND TUNNEL 
 
The purpose of this experiment is threefold: 1) students learn how to use the settings of the wind tunnel to achieve a 
desired wind speed; 2) they practise how to apply this knowledge to determine the full range of speeds attainable in the 
wind tunnel being used; and 3) they use collected data to plot a calibration curve that relates the wind speed in the test 
section to the sizes of the adjustable gap between the intake and the outlet sections of the tunnel (Figure 2). 
 
Wind tunnels ordinarily have mechanisms to change the speed of the air in them. ELD’s model 402 B used in this 
experiment achieves this by changing the length of the tunnel. This is done by creating an air gap between the exit end 
of the tunnel, where the fan is located, and its inlet end, where the test section is located. The width of the gap so 
created can be measured and each setting of the gap corresponds to a specific speed of air in the wind tunnel. By 
changing the width of this gap progressively in specified increments, and measuring the air speed at each step, one 
generates a table of air speeds corresponding to the gap openings tested. Instrumentation available in the wind tunnel 
allows the experimenter to read the difference between the stagnation and static pressures at a selected point inside the 
test section for each gap opening. Using Bernoulli’s equation for steady, inviscid, and incompressible flows, this 
difference in pressures can be converted into the average speed at the selected point by means of Equation (10):  
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where V is the speed of the moving air,  p0 is the stagnation, or  total,  pressure, p is the static pressure at the specified 
point, and ρ is the mass density of the air in the test section. For air, the ideal-gas law can be used to compute the mass 
density of air for the temperature and pressure in the laboratory. Alternatively, such a mass density can be obtained by 
looking it up in appropriate tables. 
 
For ELD’s wind tunnel model 402 B, the differences between the stagnation and static pressures in the test section were 
measured for each tested gap size. The measurements were obtained by carrying out the procedure described above 
repeatedly. The corresponding calibration curve, that is, the plot of air speed as a function of the size of the gap, is 
shown in Figure 3 [5].   
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It can be seen from Figure 3 that the speed of air in the test section decreases, as one increases the size of the gap. This 
is as expected, and here is the explanation: when the gap is completely closed, all the flow energy provided by the 
spinning fan blades goes into moving air from the open lab spaces into the inlet of the wind tunnel, through the test 
section, and out the outlet. In this case, there is only one inlet port to the tunnel and only one outlet port from it. 
However, as one opens the gap, only part of the total flow energy is used to pull air though the test section, because 
now, there is a second inlet port to the tunnel. The remainder of the flow energy goes to pull air from the room into the 
gap. This air goes directly into the outlet section of the wind tunnel, bypassing the test section.   
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Figure 3: Calibration curve showing the air speed in the test section vs the width of the air gap. 

 
EXPERIMENT 2:  BOUNDARY-LAYER FLOW IN THE TEST SECTION  
 
The purpose of this experiment is to demonstrate the existence of the boundary-layer in the test section of a wind tunnel. 
How this was achieved is explained below. For a given run, the speed of air at the centre of the test section is fixed. The 
pressure probe is moved to the geometric centre of the test section and the stagnation and static pressures are measured 
at that point. Then, the probe is moved to a series of predetermined points along the vertical line that go through the 
geometric centre. The stagnation and static pressures are measured at each such point. The pressure probe is moved 
vertically downwards in this way from its initial position all the way to the bottom wall of the test section, stopping as 
close to that wall as the thickness of the probe allows. By using small incremental displacements of the pressure probe 
and Equation (1) repeatedly, one determines the velocity profile along the chosen vertical line. In these experiments, 
small increments of 5 mm were used and found to be adequate, until one entered the boundary layer. Thereafter, 
increments of 1 mm were used. This process was repeated along three different vertical planes: the first plane was 
located one quarter of the way into the test section, following the direction of air flow (L/4); The second plane two-
quarters of the way into the test section (L/2); and the third plane three-quarters of the way in (3L/4); where L is the 
length of the test section in the direction of flow. The speeds that were so determined are shown in Figure 4, where, due 
to symmetry about the horizontal plane, data are shown only for the bottom half of the test section.   
 
The normalised height in Figure 4 refers to the height of the local point (at which velocity measurements were made) 
above the bottom plate divided by the height of the geometric centre of the test section above the same plate. Note that 
the geometric centre was the starting point for all measurements. In keeping with the tradition in boundary-layer theory, 
the horizontal axis portrays two different things simultaneously: position and velocity [6–9]. First, the numbers shown 
along the horizontal axis give the location (abscissas), measured relative to the leading edge of the plate, of the vertical 
plane (line) along which the velocity is being determined. Secondly, the magnitude of the normalised horizontal speed 
of fluid at each point along that vertical line are also represented horizontally using the (coloured) data points shown in 
that Figure. The normalised local speed in Figure 4 indicates the local speed of air at a given point divided by the speed 
of air at the geometric centre of the test section, which, again, was the starting point for all measurements. 
 
It can be seen from Figure 4 that the speed of air in the test section remains constant as one moves vertically across the 
flow from the centre of the test section towards the bottom wall, until one reaches a certain critical distance from that 
wall. Thereafter, further downward movement of the probe yields speeds that decrease in magnitude continuously until 
one reaches the wall, where the speed of air must be zero, in conformity with the no-slip condition at the solid boundary 
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[6–9]. This behaviour is clearly demonstrated by each of the three plots shown in Figure 4. Naturally, the finite 
thickness of the probe did not allow us to get infinitely close to the wall. Therefore, expected boundary-layer behaviour 
can be observed along the first vertical plane (L/4), along the second vertical plane (L/4), and along the third vertical 
plane (3L/4). Furthermore, the thickness of the boundary layer increases in the direction of flow. This is qualitatively  
in agreement with how boundary layers behave theoretically, whether they be laminar, Equation (1), or turbulent, 
Equation (7) [6–9]. The background of the plot areas was darkened to heighten the contrasts of the colours chosen for 
the graphs. 
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Figure 4: Velocity profiles at three different vertical planes in the test section (L/4, L/2, 3L/4). 

 
CHARACTERISATION OF BOUNDARY LAYERS  
 
In order to characterise the boundary layer, that is, to determine whether it is laminar, transitional or turbulent, one 
needs to know the nature of the velocity profile inside the boundary layer. This information is rarely available, a priori.  
Traditionally, one proceeds by assuming a variety of velocity profiles, which is what was done in establishing Table 1 
in this article and Table 9.2 of reference [2].  
 
In boundary-layer theory, it is assumed that one knows where the origin of the coordinate system is, which is 
traditionally taken to be at the leading edge of the plate [6-9]. Here, however, an added complication is that it is not 
clear where the origin of the coordinate system should be. Three obvious choices for such an origin come to mind 
naturally:  the inlet to the wind tunnel, the inlet to the test section, or somewhere between these two, such as where air 
exits the honeycomb-shaped strengtheners and begins to approach the test section directly. The corresponding distances 
in the wind tunnel are shown in Table 2. 
 

Table 2: Three possible origins of the coordinate system. 
 

Origin of the x-coordinate x at L/4 (in) x at L/2 (in) x at 3L/4 (in) 
Inlet to the test section 6 12 18 
Exit from the straighteners 48 54 60 
Inlet to the wind tunnel 70 76 82 

 
Each of these origins was tested and it was determined that placing the origin at the exit from the strengtheners was the 
best choice. This was because the other two possible origins yielded theoretical values of boundary-layer thicknesses 
that were either too small or too large compared to what was actually measured in the lab.  
 
Using this chosen origin, the boundary layers were found to be turbulent and the workable power-law formulas had 
values of n between 6 and 7 [6-10]. This suggested fitting the data with curves obtained using multiples of the results 
for n = 6. By trial and error, the best results arose when the power law for n = 6 was multiplied by either 3 (denoted by 
3n6 in Figure 5) or by 5 (denoted by 5n6 in Figure 5). The corresponding curves that show the growth of boundary-
layers along the plate are in Figure 5. 
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Figure 5: Normalised velocity profiles with superimposed curves for disturbance thicknesses, Equation (7). Note: 3n6 
and 5n6 indicate that the curve for n = 6 had been multiplied by 3 and 5, respectively. 
 
CONCLUSIONS 
 
It is conventional to study boundary-layer flows in a wind tunnel by inserting and mounting a plate inside the test 
section. Such plates are both heavy and sharp-edged, which requires considerable care and alertness on the part of the 
students in order to prevent serious accidents. Two experiments presented in this article allow a class to study boundary 
layers over a flat plate experimentally by using the bottom wall of the test section as a built-in flat plate; no mounting or 
dismounting of plates is necessary in these experiments. The results obtained by students in our laboratory over many 
semesters agree qualitatively and quantitatively with those predicted by boundary-layer theory. 
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